Basic Control Volume Finite Element Methods For Fluids And Solids Iisc Research Monographs

Control volume finite element methods (CVFEM) bridge the gap between finite difference and finite element methods, using the advantages of both methods for simulation of multi-physics problems in complex geometries. In Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method, CVFEM is covered in detail and applied to key areas of thermal engineering. Examples, exercises, and extensive references are used to show the use of the technique to model key engineering problems such as heat transfer in nanofluids (to enhance performance and compactness of energy systems), hydro-magnetic techniques in materials and bioengineering, and convective flow in fluid-saturated porous media. The topics are of practical interest to engineering, geothermal science, and medical and biomedical sciences. Introduces a detailed explanation of Control Volume Finite Element Method (CVFEM) to provide for a complete understanding of the fundamentals Demonstrates applications of this method in various fields, such as nanofluid flow and heat transfer, MHD, FHD, and porous media Offers complete familiarity with the governing equations in which nanofluid is used as a working fluid Discusses the governing equations of MHD and FHD Provides a number of extensive examples throughout the book Bonus appendix with sample computer code

"An extended Richardson extrapolation technique for unstructured grids is proposed: A discrete solution is obtained from an h-adaptive analysis in which the estimated error is reduced to a predetermined level and uniformly distributed over each element. The resulting mesh is then used as a base grid in constructing a hierarchy of grids via uniform element subdivision."

Due to problems associated with the design and manufacturing of composite materials, there is a need to introduce computational and intelligent systems engineering methodology in materials engineering. Soft Computing in the Design and Manufacturing of Composite Material offers an intelligent approach to advance material engineering, and significantly improves the process of designing and manufacturing a new material. This title includes chapters covering topics such as soft computing techniques, composite materials engineering, design and manufacturing of composite materials, numerical modeling, prediction, and optimization of the composite materials performance, development of the hybrid models, and control of the composite material performance. Introduction of soft computing in the composite materials engineering Includes accurate and detailed analysis of the current state of the art in the field Development of the intelligent models for design and manufacturing of composite material Details composite material performance prediction Optimization of the manufacturing process of composite materials

Numerical simulation models have become indispensable in hydro- and environmental sciences and engineering. This monograph presents a general introduction to numerical simulation in environment water, based on the solution of the equations for groundwater flow and transport processes, for multiphase and multicomponent flow and transport processes in the subsurface as well as for flow and transport processes in surface waters. It displays in detail the state of the art of discretization and stabilization methods (e.g. finite-difference, finite-element, and finite-volume methods), parallel methods, and adaptive methods as well as fast solvers, with particular focus on explaining the interactions of the different methods. The book gives a brief overview of various information-processing techniques and demonstrates the interactions of the numerical methods with the information-processing techniques, in order to achieve efficient numerical simulations for a wide range of applications in environment water.

Applications of mathematical heat transfer and fluid flow models in engineering and medicine Abram S. Dorfman, University of Michigan, USA Engineering and medical applications of cutting-edge heat and flow models This book presents innovative efficient methods in fluid flow and heat transfer developed and widely used over the last fifty years. The analysis is focused on mathematical models which are an essential part of any research effort as they demonstrate the validity of the results obtained. The universality of mathematics allows consideration of engineering and biological problems from one point of view using similar models. In this book, the current situation of applications of modern mathematical models is outlined in three parts. Part I offers in depth coverage of the applications of contemporary conjugate heat transfer models in various industrial and technological processes, from aerospace and nuclear reactors to drying and food processing. In Part II the theory and application of two recently developed models in fluid flow are considered: the similar conjugate model for simulation of biological systems, including flows in human organs, and applications of the latest developments in turbulence simulation by direct solution of Navier-Stokes equations, including flows around aircraft. Part III proposes fundamentals of laminar and turbulent flows and applied mathematics methods. The discussion is complimented by 365 examples selected from a list of 448 cited papers, 239 exercises and 136 commentaries. Key features: Peristaltic flows in normal and pathologic human organs. Modeling flows around aircraft at high Reynolds numbers. Special mathematical exercises allow the reader to complete expressions derivation following directions from the text. Procedure for preliminary choice between conjugate and common simple methods for particular problem solutions. Criterions of conjugation, definition of semi-conjugate solutions. This book is an ideal reference for graduate and post-graduate students and engineers.

This volume contains the technical papers presented at the international symposium entitled “Processing and Fabrication of Advanced Materials VIII”, held in Singapore in 1999. This was the eighth in a series of symposia bringing together engineers and researchers from industry, academia and national laboratories, working on aspects related to the processing, fabrication and characterization of advanced materials, to present and discuss their latest findings. The proceedings also contain technical papers presented at two special symposia on biomaterials and magnesium technology. Contents:Advanced MetallicsBiomaterialsAdvanced CeramicsIntermetallicsMagnesium TechnologyMetal Matrix Composites (MMC)Polymer and CompositesPowder Injection Molding Readership: Mechanical and production engineers. Keywords:Metals;Biomaterials;Advanced
Ceramics; MMC; Polymer; Composites; Molding

The first volume of CFD Review was published in 1995. The purpose of this new publication is to present comprehensive surveys and review articles which provide up-to-date information about recent progress in computational fluid dynamics, on a regular basis. Because of the multidisciplinary nature of CFD, it is difficult to cope with all the important developments in related areas. There are at least ten regular international conferences dealing with different aspects of CFD. It is a real challenge to keep up with all these activities and to be aware of essential and fundamental contributions in these areas. It is hoped that CFD Review will help in this regard by covering the state-of-the-art in this field. The present book contains sixty-two articles written by authors from the US, Europe, Japan and China, covering the main aspects of CFD. There are five sections: general topics, numerical methods, flow physics, interdisciplinary applications, parallel computation and flow visualization. The section on numerical methods includes grids, schemes and solvers, while that on flow physics includes incompressible and compressible flows, hypersonics and gas kinetics as well as transition and turbulence. This book should be useful to all researchers in this fast-developing field.

This book presents a solution for direct and inverse heat conduction problems, discussing the theoretical basis for the heat transfer process and presenting selected theoretical and numerical problems in the form of exercises with solutions. The book covers one-, two- and three dimensional problems which are solved by using exact and approximate analytical methods and numerical methods. An accompanying CD-ROM includes computational solutions of the examples and extensive FORTRAN code.

This book offers a fundamental and practical introduction to the use of computational methods. A thorough discussion of practical aspects of the subject is presented in a consistent manner, and the level of treatment is rigorous without being unnecessarily abstract. Each chapter ends with bibliographic information and exercises.

An introductory textbook covering the fundamentals of linear finite element analysis (FEA) This book constitutes the first volume in a two-volume set that introduces readers to the theoretical foundations and the implementation of the finite element method (FEM). The first volume focuses on the use of the method for linear problems. A general procedure is presented for the finite element analysis (FEA) of a physical problem, where the goal is to specify the values of a field function. First, the strong form of the problem (governing differential equations and boundary conditions) is formulated. Subsequently, a weak form of the governing equations is established. Finally, a finite element approximation is introduced, transforming the weak form into a system of equations where the only unknowns are nodal values of the field function. The procedure is applied to one-dimensional elasticity and heat conduction, multi-dimensional steady-state scalar field problems (heat conduction, chemical diffusion, flow in porous media), multi-dimensional elasticity and structural mechanics (beams/shells), as well as time-dependent (dynamic) scalar field problems, elastodynamics and structural dynamics. Important concepts for finite element computations, such as isoparametric elements for multi-dimensional analysis and Gaussian quadrature for numerical evaluation of integrals, are presented and explained.

Practical aspects of FEA and advanced topics, such as reduced integration procedures, mixed finite elements and verification and validation of the FEM are also discussed. Provides detailed derivations of finite element equations for a variety of problems. Incorporates quantitative examples on one-dimensional and multi-dimensional FEA. Provides an overview of multi-dimensional linear elasticity (definition of stress and strain tensors, coordinate transformation rules, stress-strain relation and material symmetry) before presenting the pertinent FEA procedures. Discusses practical and advanced aspects of FEA, such as treatment of constraints, locking, reduced integration, hourglass control, and multi-field (mixed) formulations. Includes chapters on transient (step-by-step) solution schemes for time-dependent scalar field problems and elastodynamics/structural dynamics. Contains a chapter dedicated to verification and validation for the FEM and another chapter dedicated to solution of linear systems of equations and to introductory notions of parallel computing. Includes appendices with a review of matrix algebra and overview of matrix analysis of discrete systems. Accompanied by a website hosting an open-source finite element program for linear elasticity and heat conduction, together with a user tutorial. Fundamentals of Finite Element Analysis: Linear Finite Element Analysis is an ideal text for undergraduate and graduate students in civil, aerospace and mechanical engineering, finite element software vendors, as well as practicing engineers and anybody with an interest in linear finite element analysis.

Heat transfer is the area of engineering science which describes the energy transport between material bodies due to a difference in temperature. The three different modes of heat transport are conduction, convection and radiation. In most problems, these three modes exist simultaneously. However, the significance of these modes depends on the problems studied and often, insignificant modes are neglected. Very often books published on Computational Fluid Dynamics using the Finite Element Method give very little or no significance to thermal or heat transfer problems. From the research point of view, it is important to explain the handling of various types of heat transfer problems with different types of complex boundary conditions. Problems with slow fluid motion and heat transfer can be difficult problems to handle. Therefore, the complexity of combined fluid flow and heat transfer problems should not be underestimated and should be dealt with carefully. This book: Is ideal for teaching senior undergraduates the fundamentals of how to use the Finite Element Method to solve heat transfer and fluid dynamics problems Explains how to solve various heat transfer problems with different types of boundary conditions Uses recent computational methods and codes to handle complex fluid motion and heat transfer problems Includes a large number of examples and exercises on heat transfer problems In an era of parallel computing, computational efficiency and easy to handle codes play a major part. Bearing all these points in mind, the topics covered on combined flow and heat transfer in this book will be an asset for practising engineers and postgraduate students. Other topics of interest for the heat transfer community, such as heat exchangers and radiation heat transfer, are also included.
This volume contains the proceedings of the 4th International Conference on Numerical Methods and Applications. The major topics covered include: general finite difference, finite volume, finite element and boundary element methods, general numerical linear algebra and parallel computations, numerical methods for nonlinear problems and multiscale methods, multigrid and domain decomposition methods, CFD computations, mathematical modeling in structural mechanics, and environmental and engineering applications. The volume reflects the current research trends in the specified areas of numerical methods and their applications. Contents: Computational Issues in Large Scale Eigenvalue Problems; Combustion Modeling in Industrial Furnaces; Monte Carlo Methods; Multilevel Methods for Incompressible Viscous Flows; Approximation of Nonlinear and Functional PDEs; Solving Linear Systems with Error Control; Regular Numerical Methods for Inverse and Ill-Posed Problems; Multifield Problems; Parallel and Distributed Numerical Computing with Applications; Parameter-Robust Numerical Methods for Singularly Perturbed and Convection-Dominated Problems; Finite Difference Methods; Finite Element Methods; Finite Volume Methods; Boundary Element Methods; Numerical Linear Algebra; Numerical Methods for Nonlinear Problems; Numerical Methods for Multiscale Problems; Multigrid and Domain Decomposition; Computational Fluid Dynamics; Mathematical Modelling in Structural Mechanics; Environmental Modelling; Engineering Applications.

Abstract: "A key ingredient in simulation of flow in porous media is accurate determination of the velocities that drive the flow. Large-scale irregularities of the geology (faults, fractures, and layers) suggest the use of irregular grids in simulation. This paper presents a control-volume mixed finite element method that provides a simple, systematic, easily implemented procedure for obtaining accurate velocity approximations on irregular block-centered grids. The control-volume formulation of Darcy's law can be viewed as a discretization into element-sized 'tanks' with imposed pressures at the ends, giving a local discrete Darcy law analogous to the block-by-block conservation in the usual mixed discretization of the mass-conservation equation. Numerical results in two dimensions show second-order convergence in the velocity, even with discontinuous anisotropic permeability on an irregular grid. The method extends readily to three dimensions."

Basic Control Volume Finite Element Methods for Fluids and SolidsWorld Scientific

This book is intended for presenting the basic concepts of Finite Element Analysis applied to several engineering applications. Salient Features: 1. Covers several modules of elasticity, heat conduction, eigenvalue and fluid flow analysis which are necessary for a student of Mechanical Engineering. 2. Finite Element formulations have been presented using both global and natural coordinates. It is important for providing smooth transition from formulation in global coordinates to natural coordinates. 3. Special focus has been given to heat conduction problems and fluid flows which are not sufficiently discussed in other textbooks. 4. Important factors affecting the formulation have been included as Miscellaneous Topics. 5. Many examples have been worked out in order to highlight the applications of Finite Element Analysis.

The Control Volume Finite Element Method (CVFEM) is a hybrid numerical methods, combining the physics intuition of Control Volume Methods with the geometric flexibility of Finite Element Methods. The concept of this monograph is to introduce a common framework for the CVFEM solution so that it can be applied to both fluid flow and solid mechanics problems. To emphasize the essential ingredients, discussion focuses on the application to problems in two-dimensional domains which are discretized with linear-triangular meshes. This allows for a straightforward provision of the key information required to fully construct working CVFEM solutions of basic fluid flow and solid mechanics problems.

This is the first volume in the series. It analyzes several fundamental methodology issues in numerical heat transfer and fluid flow and identifies certain areas of active application. The finite-volume approach is presented with the finite-element methods as well as with energy balance analysis. Applications include the latest development in turbulence modeling and current approaches to inverse problems. This first volume of the proceedings of the 8th conference on "Finite Volumes for Complex Applications" (Lille, June 2017) covers various topics including convergence and stability analysis, as well as investigations of these methods from the point of view of compatibility with physical principles. It collects together the focused invited papers comparing advanced numerical methods for Stokes and Navier-Stokes equations on a benchmark, as well as reviewed contributions from internationally leading researchers in the field of analysis of finite volume and related methods, offering a comprehensive overview of the state of the art in the field. The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation, and recent decades have brought significant advances in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. The book is a valuable resource for researchers, PhD and master’s level students in numerical analysis, scientific computing and related fields such as partial
differential equations, as well as engineers working in numerical modeling and simulations.

In the past few decades, the Finite Element Analysis (FEA) has been developed into a key indispensable technology in the modeling and simulation of various engineering systems. The present book is a result of contributions of experts from international scientific community and collects original and innovative research studies on recent applications of FEA in five major topics of mechanical engineering namely, fluid mechanics and heat transfer, machine elements analysis and design, machining and product design, wave propagation and failure-analysis and structural mechanics and composite materials. It is meant to provide a small but valuable sample of contemporary research activities around the world in this field and it is expected to be useful to a large number of researchers. The introductions, data, and references in this book will help the readers know more about this topic and help them explore this exciting and fast-evolving field.

This Finite Element Method offers a fundamental and practical introduction to the finite element method, its variants, and their applications in engineering. Every concept is introduced in the simplest possible setting, while maintaining a level of treatment that is as rigorous as possible without being unnecessarily abstract. Various finite elements in one, two, and three space dimensions are introduced, and their applications to elliptic, parabolic, hyperbolic, and nonlinear equations and to solid mechanics, fluid mechanics, and porous media flow problems are addressed. The variants include the control volume, multipoint flux approximation, nonconforming, mixed, discontinuous, characteristic, adaptive, and multiscale finite element methods. Illustrative computer programs in Fortran and C++ are described. An extensive set of exercises are provided in each chapter. This book serves as a text for one-semester course for upper-level undergraduates and beginning graduate students and as a professional reference for engineers, mathematicians, and scientists.

A practical approach to the study of fluid mechanics at the graduate level.

"The proposed method has been implemented into computer programs, and used to solve several test problems. These include convection-diffusion problems, and laminar and turbulent flow problems, in both two- and three-dimensions. The results demonstrate the ability of the proposed CVFEM to accurately solve the mathematical model used in this thesis."

--- Numerical Methods for Partial Differential Equations: Finite Difference and Finite Volume Methods focuses on two popular deterministic methods for solving partial differential equations (PDEs), namely finite difference and finite volume methods. The solution of PDEs can be very challenging, depending on the type of equation, the number of independent variables, the boundary, and initial conditions, and other factors. These two methods have been traditionally used to solve problems involving fluid flow. For practical reasons, the finite element method, used more often for solving problems in solid mechanics, and covered extensively in various other texts, has been excluded. The book is intended for beginning graduate students and early career professionals, although advanced undergraduate students may find it equally useful. The material is meant to serve as a prerequisite for students who might go on to take additional courses in computational mechanics, computational fluid dynamics, or computational electromagnetics. The notations, language, and technical jargon used in the book can be easily understood by scientists and engineers who may not have had graduate-level applied mathematics or computer science courses. Presents one of the few available resources that comprehensively describes and demonstrates the finite volume method for unstructured mesh used frequently by practicing code developers in industry Includes step-by-step algorithms and code snippets in each chapter that enables the reader to make the transition from equations on the page to working codes Includes 51 worked out examples that comprehensively demonstrate important mathematical steps, algorithms, and coding practices required to numerically solve PDEs, as well as how to interpret the results from both physical and mathematic perspectives